Calibrating high intensity absorption imaging of ultracold atoms
نویسندگان
چکیده
منابع مشابه
Strong saturation absorption imaging of dense clouds of ultracold atoms.
We report on a far above saturation absorption imaging technique to investigate the characteristics of dense packets of ultracold atoms. The transparency of the cloud is controlled by the incident light intensity as a result of the nonlinear response of the atoms to the probe beam. We detail our experimental procedure to calibrate the imaging system for reliable quantitative measurements and de...
متن کاملAbsorption imaging of ultracold atoms on atom chips.
Imaging ultracold atomic gases close to surfaces is an important tool for the detailed analysis of experiments carried out using atom chips. We describe the critical factors that need be considered, especially when the imaging beam is purposely reflected from the surface. In particular we present methods to measure the atom-surface distance, which is a prerequisite for magnetic field imaging an...
متن کاملDirect absorption imaging of ultracold polar molecules
We demonstrate a scheme for direct absorption imaging of an ultracold ground-state polar molecular gas near quantum degeneracy. Imaging molecules without closed optical cycling transitions is challenging. Our technique relies on photon-shot-noise-limited absorption imaging on a strong but open bound-bound molecular transition. We present a systematic characterization of this imaging technique. ...
متن کاملSingle-particle-sensitive imaging of freely propagating ultracold atoms
We present a novel imaging system for ultracold quantum gases in expansion. After release from a confining potential, atoms fall through a sheet of resonant excitation laser light and the emitted fluorescence photons are imaged onto an amplified CCD camera using a high numerical aperture optical system. The imaging system reaches an extraordinary dynamic range, not attainable with conventional ...
متن کاملNon-destructive Faraday imaging of dynamically controlled ultracold atoms.
We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2017
ISSN: 1094-4087
DOI: 10.1364/oe.25.008670